Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration.
نویسندگان
چکیده
One possible reason why regeneration remains enigmatic is that the dominant organisms used for studying regeneration are not amenable to genetic approaches. We mutagenized zebrafish and screened for temperature-sensitive defects in adult fin regeneration. The nightcap mutant showed a defect in fin regeneration that was first apparent at the onset of regenerative outgrowth. Positional cloning revealed that nightcap encodes the zebrafish orthologue of mps1, a kinase required for the mitotic checkpoint. mps1 expression was specifically induced in the proximal regeneration blastema, a group of cells that normally proliferate intensely during outgrowth. The nightcap mutation caused severe defects in these cells. However, msxb-expressing blastemal cells immediately distal to this proliferative region did not induce mps1 and were retained in mutants. These results indicate that the proximal blastema comprises an essential subpopulation of the fin regenerate defined by the induction and function of Mps1. Furthermore, we show that molecular mechanisms of complex tissue regeneration can now be dissected using zebrafish genetics.
منابع مشابه
Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration.
Zebrafish can completely regenerate amputated fins via formation of a blastema, a proliferative mass of undifferentiated precursor cells. During regenerative growth, blastema proliferation must be tightly coordinated with cellular differentiation, but little is known about how this is achieved. Here, we show that Notch signaling is essential for maintenance of blastema cells in a proliferative ...
متن کاملA proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration.
Previous studies of zebrafish fin regeneration led to the notion that the regeneration blastema is a homogeneous population of proliferating cells. Here, we show that the blastema consists of two components with markedly distinct proliferation properties. During early blastema formation, proliferating cells are evenly distributed. At the onset of regenerative outgrowth, however, blastemal cells...
متن کاملPositional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration.
Here, we used classical genetics in zebrafish to identify temperature-sensitive mutants in caudal fin regeneration. Gross morphological, histological, and molecular analyses revealed that one of these strains, emmental (emm), failed to form a functional regeneration blastema. Inhibition of emm function by heat treatment during regenerative outgrowth rapidly blocked regeneration. This block was ...
متن کاملActivin-betaA signaling is required for zebrafish fin regeneration.
Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells pr...
متن کاملFgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish.
Appendage regeneration is defined by rapid changes in gene expression that achieve dramatic developmental effects, suggesting involvement of microRNAs (miRNAs). Here, we find dynamic regulation of many miRNAs during zebrafish fin regeneration. In particular, miR-133 levels are high in uninjured fins but low during regeneration. When regeneration was blocked by Fibroblast growth factor (Fgf) rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 129 22 شماره
صفحات -
تاریخ انتشار 2002